Medical Decision Sciences

Ju Han Kim, M.D., Ph.D., M.S. SNUBI: SNUBiomedical Informatics

Medical Decision Sciences

- Medical decision making
- Data, Information, & Knowledge
- Knowledge representation
- Bayes rule
- ROC curve
- Clinical decision analysis
- Machine learning
- Clinical decision support system
- Grade C

Clinical practice as decision making

- The ability to make good decisions is the hallmark of the good performing professional.
- Information system can be used for good decision making and decision support.
- Therefore, it is important to understand the theory of decision making.

A working definition of a decision

An irrevocable allocation of resources

- Resources can be time, money, attention cycles, emotional energy, or anything else of value to the decision maker.
- Irrevocable allocation is required, because otherwise there is no crisp way do define when a decision should be made.

Decision is different than worrying

Worrying typically does not involve allocation of resources.

Medical Decision Sciences

- Medical decision making
- Data, Information, & Knowledge
- Knowledge representation
- Bayes rule
- ROC curve
- Clinical decision analysis
- Machine learning
- Clinical decision support system
- Grade C

Data, Information, & Knowledge

- Data
- Information
- Knowledge

Informatics: knowledge about knowledge

The acts of the mind wherein it exerts its power over simple ideas, are chiefly these three:

- 1. Combining several simple ideas into one compound one, and the all complex ideas are made.
- The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
- 3. The third is separating them from all other ideas that accompany them in their real existence: this is called abstraction, and thus all its general ideas are made.

John Locke, An Essay Concerning Human Understanding (1690)

Frames: an example

NAME : Acute glomerulonephritis	
Triggered by	facial edema, not painful, not erythematical, symmetrical, etc.
Confirmed by	malaise, asthenia, anorexia, etc.
Caused by	recent streptococci infection
Causes	sodium retention, acute hypertension, nephrotic syndrome, etc.
Complications	acute kidney failure
Differential diagnosis	(If chronic high blood pressure then chronic glomerulonephritis)
	(If recurrent edema then nephrotic syndrome)

Diagnostic test characteristics 에제) Sensitivity=99.99%, specificity=99.9% 인 최신의 에이즈 검사가 개발되었다. 철수는 이 검사에 양성반응을 보였다. 철수가 에이즈에 감염됬을 확률은 얼마인가? (현재 한국인의 에이즈 유병율은 0.0001 이라고 한다.) 1. 99% 2. 95% 3. 80% 4. 50% 5. 10%

Medical Decision Sciences RC • Medical decision making • • Data, Information, & Knowledge • • Knowledge representation • • Bayes rule • • ROC curve • • Clinical decision analysis • • Machine learning • • Clinical decision support system • • Grade C •

Medical Decision Sciences

- Medical decision making
- Data, Information, & Knowledge
- Knowledge representation
- Bayes rule
- ROC curve
- Clinical decision analysis
- Machine learning
- Clinical decision support system
- Grade C

Why decision making is so hard?

UNCERTAINTY!!

- If you have all information about the probabilities of different events, then it typically is NOT a hard decision
- If there is no uncertainty, and the decision is still hard, then the problem is that the utility function is not clear

Simple decision tree

